organic compounds

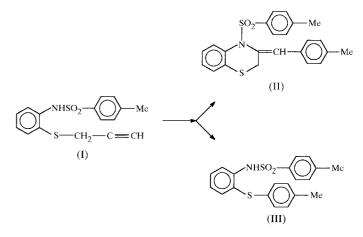
Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

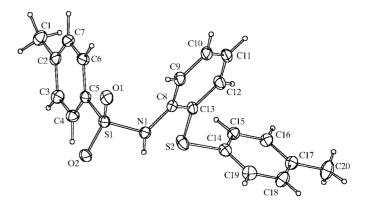
4-Methyl-*N*-[2-(*p*-tolylsulfanyl)phenyl]benzenesulfonamide

Surajit Banerjee,^a Alok K. Mukherjee,^a* Bidisha Nandi,^b Nitya G. Kundu^b and Madeleine Helliwell^c

^aDepartment of Physics, Jadavpur University, Calcutta 700 032, India, ^bDepartment of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Calcutta 700 032, India, and ^cDepartment of Chemistry, University of Manchester, Manchester M13 9PL, England Correspondence e-mail: akm@juphys.ernet.in


Received 25 July 2000 Accepted 14 September 2000

The title compound, $C_{20}H_{19}NO_2S_2$, is formed by a palladiumcopper-catalyzed reaction between 4-methyl-*N*-[2-(prop-2ynylsulfanyl)phenyl]benzenesulfonamide and *p*-iodotoluene. The molecules contain three essentially planar parts, namely an aminothiophenol moiety (*A*), a toluenesulfone moiety excluding the oxo ligands (*B*) and a tolyl group (*C*), approximately orthogonal to each other; the dihedral angles *A*/*B*, *A*/*C* and *B*/*C* are 111.6 (1), 89.3 (1) and 101.4 (1)°, respectively. Intermolecular N-H··O hydrogen bonds link the molecules into infinite one-dimensional chains.


Comment

Metal-catalyzed heteroannulation is an important synthetic tool for the formation of a variety of heterocyclic systems of biological importance (Mukherjee *et al.*, 2000; Kundu *et al.*, 1999). During the synthesis of a sulfur-containing heterocyclic compound, benzothiazine, (II), *via* a palladium–copper-catalyzed reaction between 4-methyl-*N*-[2-(prop-2-ynylsulfanyl)-phenyl]benzenesulfonamide, (I), and *p*-iodotoluene, the title compound, 4-methyl-*N*-[2-(*p*-tolylsulfanyl)phenyl]benzenesulfonamide, (III), was obtained through a novel depropargylation and *S*-arylation. The X-ray structural study of (III) was undertaken in order to establish the regio- and stereospecificities of the reaction.

The structure of (III) (Fig. 1) consists of three essentially planar parts (*A*, *B* and *C*) approximately orthogonal to each other. The central aminothiophenol moiety *A* (atoms C8–C13, N1, S2) is planar to within 0.031 (4) Å. The other two parts, *p*-toluenesulfone excluding the two oxo ligands (*B*: atoms C1– C7, S1) and *p*-tolyl (*C*: atoms C14–C20), with a maximum deviation of 0.025 (4) Å for an in-plane atom (C1) from the corresponding least-squares plane, are inclined by 101.4 (1)° with respect to each other. The dihedral angles *A*/*B* and *A*/*C* are 111.6 (1) and 89.3 (1)°, respectively. The torsion angle C5-S1-N1-C8 of 62.4 (3)° establishes a *gauche* conformation of the molecule when viewed along the S-N axis.

The geometric parameters of (III) agree well with those found in other substituted *p*-toluenesulfonamide structures (Parvez *et al.*, 1999; Goswami *et al.*, 1998; Bachechi *et al.*, 1996; Gainsford & Lensink, 1996). The N atom with a bond angle sum of 349.5 (2)° indicates a pyramidal configuration. The angular disposition of the bonds about the sulfonyl S atom (S1) deviate significantly from that of regular tetrahedron. The widening of the O1-S1-O2 angle of 119.1 (1)° from the ideal tetrahedral value is presumably the result of the repulsive interaction between the short S=O bonds (Table 1). The lack of π bonding in the branches among the phenyl rings precludes any possible π conjugation across the whole molecule. The aromatic nature of the rings is therefore localized within the rings and on their direct substituents. One of the

ZORTEP (Zsolnai, 1995) view (50% probability level) of the title molecule.

sulfonyl O atoms, O1, is nearly coplanar with the tolyl substituent $[O1-S1-C5-C6\ 14.2\ (3)^{\circ}]$; the other sulfonyl O atom, O2, forms a torsion angle O2-S1-C5-C6 of 144.8 (3)°.

In the solid state, the molecules translated in the *b* direction are linked through $N1-H8\cdots O2$ intermolecular hydrogen bonds (Table 2) to form infinite one-dimensional chains.

Experimental

Compound (III) [m.p. 357 (1) K] was synthesized by stirring a mixture of 4-methyl-N-[2-(prop-2-ynylsulfanyl)phenyl]benzenesulfonamide, (I) (1.32 mmol), and p-iodotoluene (1.33 mmol) in the presence of bis(triphenylphosphine)palladium(II) chloride (0.04 mmol), cuprous iodide (0.52 mmol) and triethylamine (5.23 mmol) followed by refluxing with tetrahydrofuran for 36 h under an argon atmosphere. After usual work-up, the crude product was purified by column chromatography through silica gel using an ethyl acetatepetroleum spirit (333-353 K) mixture (1:9) as eluant, yielded the title compound, (III). Single crystals suitable for X-ray analysis were obtained from a CHCl₃-light petroleum (333-353 K) mixture. Elemental analysis: calculated for C₂₀H₁₉NO₂S₂: C 65.01, H 5.18, N 3.79%; found C 65.32, H 5.25, N 3.74%.

Z = 2

 $D_x = 1.335 \text{ Mg m}^{-3}$

Cell parameters from 25

Cu $K\alpha$ radiation

reflections

 $\theta = 33.5 - 39.8$ $\mu = 2.727 \text{ mm}^{-1}$

T = 293 (2) K

 $R_{\rm int} = 0.039$

 $\theta_{\rm max} = 70.11^{\circ}$

 $h = -12 \rightarrow 12$

Block, colourless

 $0.35 \times 0.25 \times 0.20 \text{ mm}$

every 150 reflections

intensity decay: <3%

Crystal data

 $C_{20}H_{19}NO_2S_2$ $M_r = 369.48$ Triclinic, P1a = 10.530 (4) Åb = 11.873 (3) Å c = 8.798 (4) Å $\alpha = 90.76 \ (4)^{\circ}$ $\beta = 113.31 (4)^{\circ}$ $\gamma = 112.05 \ (2)^{\circ}$ V = 919.2 (6) Å³

Data collection

Rigaku AFC-5R diffractometer ω -2 θ scans Absorption correction: ψ scan (North et al., 1968) $k = -14 \rightarrow 13$ $l=-9\rightarrow 10$ $T_{\rm min}=0.449,\ T_{\rm max}=0.580$ 3497 measured reflections 3 standard reflections 3301 independent reflections 2610 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $w = 1/[\sigma^2(F_o^2) + (0.0764P)^2]$ + 0.3704P] $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.147$ where $P = (F_o^2 + 2F_c^2)/3$ S = 1.031 $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.25 \text{ e} \text{ Å}^{-3}$ 3301 reflections $\Delta \rho_{\rm min} = -0.28 \ {\rm e} \ {\rm \AA}^{-3}$ 227 parameters H atoms were constrained

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1995); program(s) used to solve structure: MULTAN88 (Debaerdemaeker et al., 1988); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1995); software used to prepare material for publication: SHELXL97 and PARST95 (Nardelli, 1995).

Table 1

Selected geometric parameters (Å, °).

\$1-O1	1.427 (2)	S2-C13	1.783 (3)
S1-O2	1.437 (2)	S2-C14	1.790 (3)
S1-N1	1.647 (2)	N1-C8	1.437 (3)
S1-C5	1.765 (3)		
O1-S1-O2	119.09 (13)	O2-S1-C5	108.79 (13)
O1-S1-N1	108.45 (13)	N1-S1-C5	106.84 (12)
O2-S1-N1	104.96 (12)	C13-S2-C14	101.85 (14)
O1-S1-C5	108.09 (13)	C8-N1-S1	122.21 (18)

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H8···S2	0.98	2.55	3.025 (3)	110
$N1 - H8 \cdots O2^i$	0.98	2.13	3.039 (4)	154

Symmetry code: (i) -x, 1 - y, -z.

SB wishes to thank the University Grants Commission, India, for a research fellowship.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OA1105). Services for accessing these data are described at the back of the journal.

References

- Bachechi, F., Coiro, V. M. & Delfini, M. (1996). Acta Cryst. C52, 2915-2917.
- Debaerdemaeker, T., Germain, G., Main, P., Refaat, L. S., Tate, C. & Woolfson, M. M. W. (1988). MULTAN88. Universities of York, England, and Louvain, Belgium.
- Gainsford, G. J. & Lensink, C. (1996). Acta Cryst. C52, 472-474.
- Goswami, S., Mahapatra, A. K., Nigam, G. D., Chinnakali, K. & Fun, H.-K. (1998). Acta Cryst. C54, 1301-1302.
- Kundu, N. G., Khan, M. W., Guha, S. & Mukherjee, A. K. (1999). Acta Cryst. C55. 239-241.
- Molecular Structure Corporation (1993). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA

Molecular Structure Corporation (1995). TEXSAN. Version 1.7-1. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.

Mukherjee, A. K., Guha, S., Khan, M. W., Kundu, N. G. & Helliwell, M. (2000). Acta Cryst. C56, 85-87.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.

- North, A. C. T., Philips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359
- Parvez, M., Arayne, M. S., Kamranzaman, M. & Sultana, N. (1999). Acta Cryst. C55, 74-75.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Zsolnai, L. (1995). ZORTEP. University of Heidelberg, Germany.